Skip to content

Papers and notes

2022

  • F. Hulphers, "Deep learning for anomaly detection in high-energy beam dump data from the Large Hadron Collider", Master's thesis 2022, Available: http://cds.cern.ch/record/2834608

  • C. Obermair, T. Cartier-Michaud, A. Apollonio, W. Millar, L. Felsberger, L. Fischl, H. S. Bovbjerg, D. Wollmann, W. Wuensch, N. Catalan-Lasheras, M. Boronat, F. Pernkopf, G. Burt, “Explainable Machine Learning for Breakdown Prediction in High Gradient RF Cavities” Phys. Rev. Accel. Beams, 25(10), 104601. 2022, Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.104601

  • H.S. Bovbjerg, C. Obermair, A. Apollonio, T. Cartier-Michaud, W. Millar, Z.H. Tan , M. Shen, D. Wollmann, “Data Augmentation for Breakdown Prediction in CLIC RF Cavities” in Proc. IPAC'22, Available: https://accelconf.web.cern.ch/ipac2022/papers/tupoms054.pdf

  • J. Barth, F. Bogyai, J.C. Garnier, M. Majewski, T. Ribeiro, A. Mnich, M. Pocwierz, R. Selvek, R. Simpson, A. Stanisz, D. Wollmann, M. Zerlauth, "A Modernized Architecture for the Post Mortem System at CERN", Proc. IPAC’22, (2022). 1557-1560, Available: https://jacow.org/ipac2022/papers/tupoms055.pdf.

  • A. Lechner, P. Bélanger, I. Efthymiopoulos, L. Grob, B. Lindstrom, R. Schmidt, and D. Wollmann, "Dust-induced beam losses in the cryogenic arcs of the CERN Large Hadron Collider", Phys. Rev. Accel. Beams, 2022, Available: https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.25.041001

  • L. Fischl, "Data Analysis of the XBox-2 Radiofrequency Cavity at CERN using Machine Learning Techniques", Master's thesis 2022, Available: http://cds.cern.ch/record/2809339

2021

2020

2019

2018

2015

2013

2012